

Active Living: Using Research to Inform Policy and Practice

James Sallis UCSD, Active Living Research <u>http://sallis.ucsd.edu</u>

Society for Nutrition Education and Behavior. July 30, 2016

Outline

- Why physical activity?
- What is evidence about the role of environments and policies in active living?
- Examples of effective PSE strategies
- How to improve our translation of research to policy and practice

Deaths (thousands) attributable to individual risk factors in both sexes

Danaei G et al, PLoS Medicine, 2009

How Did We Become Inactive?

- Leisure
- Occupation
- Transportation

www.activelivingresearch.org

We have invested \$Billions to make active transport difficult or impossible

Residential subdivision

a a a a a a a a a

mannanna

Highway interchange

Active Transportation by Youth has Decreased

Mode for Trips to School – National Personal Transportation Survey

McDonald NC. Am J Prev Med 2007;32:509.

Accelerometer-based MVPA for Adolescents. From Hallal, Lancet, 2012

Time Spent in MVPA adjusted for age, sex

Obesity is strongly related to walking, cycling, and transit use!

Elements of An Active Living Community

Public Health Needs to Partner

Setting for PA

Expertise for Policy, Practice

Planners

- Neighborhood
- Transportation facilities (sidewalks)
- Transport engineers & planners

Recreation facilities

- Park & rec, landscape architects
- Educators, architects

Schools & workplaces

www.activelivingresearch.org

The Neighborhood Quality of Life (NQLS) Study: The Link Between Neighborhood Design and Physical Activity 2001-2005

> James Sallis, Ph.D. Brian Saelens, Ph.D. Lawrence Frank, Ph.D. And team

Accelerometer-based MVPA Min/day in Walkability-by-Income Quadrants

Walkability: *p* =.0002

Income: *p* =.36

Walkability X Income: *p* =.57

* Adjusted for neighborhood clustering, gender, age, education, ethnicity, # motor vehicles/adult in household, site, marital status, number of people in household, and length of time at current address.

Estimated Public Health Impact of Walkability

- 50 minutes per week = 2+ miles per week
- 2 miles per week = 100 miles per year
- 100 miles per year = 10,000 kcal per year
- 10,000 kcal per year = 2.9 pounds/1.3 kg
- More than the average adult weight gain per year in the U.S.

Percent Overweight or Obese (BMI<u>>25</u>) in Walkability-by-Income Quadrants

Walkability: *p* =.007

Income: *p* =.081

Walkability X Income: *p* =.26

* Adjusted for neighborhood clustering, gender, age, education, ethnicity, # motor vehicles/adult in household, site, marital status, number of people in household, and length of time at current address.

Accelerometer-based MVPA Min/day in Walkability-by-Income Quadrants

Walkability: F=13.74; *p* =.000

Income: F=2.59; *p* =.108

Walkability X Income: F=.001; p =.981

* Adjusted for gender and age

Outside Activities (except gardening) (min/wk) SNOLS

Low PA, Low N	Low PA, High N	High PA, Low N	High PA, High N
34.4%	31.6%	28.7%	27.3%
18.8%	15.3%	14.4%	11.7%
	Low PA, Low N 34.4% 18.8%	Low PA, Low N Low PA, High N 34.4% 31.6% 18.8% 15.3%	Low PA, Low N Low PA, High N High PA, Low N 34.4% 31.6% 28.7% 18.8% 15.3% 14.4%

Atlanta, USA

Ghent, Belgium

We can learn from international studies

Dose Response between Number of Environmental Characteristics and HEPA/Minimal Activity (Pooled City Sample)

Sallis. Am J Prev Med. 06/09

www.ipenproject.org

- Encourage environment and policy research on physical activity worldwide
- Develop & encourage use of common measures and methods
- Support investigators to obtain internal funding
- Coordinate international studies
 - IPEN Adult, funded by NCI
 - IPEN Adolescent, funded by NHLBI

•...Communicate findings to decision makers

City, Country

Results: Environmental Attributes + MVPA Min/Week

GIS-based Environmental Variable	Single variable model	Final adjusted model
Net residential density 1km	***	***
Intersection density 1km	*	NS
Mixed land use 1km (retail & civic)	NS	NS
Public transit density 1km	**	*
Number of parks 0.5km	**	*

Associations of environmental variables based on 1 km buffers with accelerometry-based estimates of daily minutes of moderate-to-vigorous physical activity

Number of parks (1km buffers

Comparing MVPA by Lowest & Highest Cities on Environmental Variables

- Adults living in the most activity-friendly cities did 68-89 more minutes of MVPA per week compared to those in the least activity-friendly cities
- Living in the most activity-friendly environments could help the average resident achieve 32-59% of the 150 minute/week physical activity guidelines

Design of streetscapes matters

What is the role of streetscape design? MAPS Mini

- 15-item MAPS-Mini was designed for practitioners and advocates
 - Reduced from 120 items
- Items were selected based on
 - Correlations with physical activity
 - Guidelines and recommendations
 - Modifiability
- Evaluated for validity in 3677 children, teens, adults, older adults
 - 3 regions

How do MAPS-Mini scores relate to active transportation? ADJUSTED

MAPS Mini Score	Children	Adolescents	Adults	Seniors
Commercial Segments				N/A
Public Parks				
Transit Stops				
Street Lights				
Benches				
Building Maintenance				
Absence of Graffiti				
Sidewalk				
Buffer				
Tree, Awning Coverage				
Absence of Trip Hazards				
Marked Crosswalk				
Curb Cuts				
Crossing Signal				
GRAND SCORE				
GRAND SCORE (for Active Transport)				

A national study of US adolescents (N=20,745)* found a greater number of physical activity facilities is directly related to physical activity and inversely related to risk of overweight

People are Most Active on Tracks and Walking Paths

Cohen. RAND

Multistate Evaluation of Safe Routes to School Programs

Orion Stewart, MUP; Anne Vernez Moudon, Dr Es Sc; Charlotte Claybrooke, MS

American Journal of Health Promotion

January/February 2014, Vol. 28, No. 3 Supplement S89

% of SRTS Projects, By Type

Moving Forward: WASH DOT.

http://www.wsdot.wa.gov/research/reports/fullreports/743.3.pdf

Walking & Cycling to School Pre & Post SRTS Projects in 5 States

Moving Forward: WASH DOT.

•

http://www.wsdot.wa.gov/research/reports/fullreports/743.3.pdf

Can we increase bicycling? According to controlled studies, single cycling interventions don't work

Interventions to promote cycling: systematic review

Lin Yang, PhD student Shannon Sahlqvist, career development fellow Alison McMinn, career development fellow Simon J Griffin, assistant director David Ogilvie, clinical investigator scientist

BMJ

Case studies of multi-level, multi-component, multi-year interventions suggest a different conclusion

Source: Pucher, Dill, and Handy, "Infrastructure, Programs, and Policies to Increase Bicycling," *Preventive Medicine*, Jan 2010, Vol. 50, S.1, pp. S106-S125.

Source: Pucher, Dill, and Handy, "Infrastructure, Programs, and Policies to Increase Bicycling," *Preventive Medicine*, Jan 2010, Vol. 50, S.1, pp. S106-S125.

Policy Recommendations

- Zoning/planning laws that require or favor mixed-use, high density development
- Change transportation goals

 High quality pedestrian and bicycle facilities
- Count pedestrians and bicyclists
- More investment in active transport
- Parks in every neighborhood
- Parks designed to promote activity in all ages
- Invest first in lower-income neighborhoods

Conclusions

- Active cities are designed with walkable neighborhoods, inviting streetscapes, proximal and well-designed parks, safe places to bicycle, and good access to public transit
- The more activity-friendly the city, the more physical activity
- The more activity-friendly the city, the more cobenefits, including economic
- Please advocate for a more active America, but how?

Research is not easy to put into practice

ACTIVE LIVING RESEARCH

What info do policy makers & advocates need?

- Evidence relevant to CURRENT policy debates
- Evidence of what works
- Evidence relevant to local communities & populations at highest risk
- Evidence communicated in accessible ways
- Follow the money: how much does it cost & what is ROI?

Co-Benefits of Designing Activity-Friendly Environments

	Physical Health	Mental Health	Social Benefits	Environmental Sustainability	Safety / Injury Prevention	Economic Benefits
Open spaces	57.5+	93+	42.5+	20+	23+	19+
/ Parks	3.5(0)		4(0)	4(0)		4(0)
/ Trails						
Urban	105+	31+	80.5+	265.5+	13.5(0)	69+
Design	54(0)	4-	29(0)	45.5(0)	18.5-	10.5(0)
5	19-			3.5-		4-
Transport	7+	3+	23+	70+	67+	56+
Systems	3.5-	3.5(0)		21(0)	14(0)	3.5(0)
5				3-	4-	4-
Schools	19.5+	21+	11+	21.5+	4+	15+
	3.5(0)				3-	
Workplaces	55+	18.5+		20.5+		48+
/ Buildings	3.5(0)	4-				3.5(0)

Sallis, J.F., et al. (2015). Co-benefits of designing communities for active living:

An exploration of literature. International Journal of Behavioral Nutrition and by Physical Activity, 12: 30.

Designed to Move: Active Cities

Blueprint for city leaders to create an active city

- Comprehensive summary of the evidence base on co-benefits
- Proven interventions
- Recommendations, checklists, practical steps/ideas, sample metrics
- Talking points for city leaders
- Case studies of 'bright spots'

www.designedtomove.org/resources

ALR: Communicating Results to Non-Researchers

- Website: about 12,000 visits per month
 - Research briefs are widely downloaded
 - MOVE blog
- Webinar series: www.dialogue4health.org
- ALR electronic Newsletter to list of 5000+
- Facebook, Twitter, Youtube
- Partnerships, presentations

Good feedback from infographics

Sources: RACIAL DISPARITIES: Moore LV, Diez Roux AV, Evenson KR, et al. "Availability of Recreational Resources in Minority and Low Socioeconomic Status Areas." American Journal of Preventive Medicine, 34(1): 16–22, 2008. PROPERTY VALUES: Bolitzer B and Netusii N. "The Impact of Open Spaces on Property Values in Portland, Oregon." Journal of Environmental Management, 59(3): 185–193, July 2000. OPEN SPACE: Gordon-Larsen P, Nelson M, Page P, et al. "Inequality in the Built Environment Underlies Key Health Disparities in Physical Activity and Obesity." Pediatrics, 117(2), 417-424, 2006. TRAILS: Wang G, Macera CA, Scudder-Soucie B, et al. "A cost-benefit analysis of physical activity using bike/pedestrian trails." Health Promotion Practice, 6(2): 174–179, 2005.

Research Translation Grant: Active Transport to School: Keshia Pollack

- Audiences
 - School principals
 - City elected officials
 - City agency directors
 - School and City police
 - Community members
- Messages
 - Routes to school have physical hazards and violence
 - Feasible solutions are Walking School Buses, streetscape improvements
- Tactics
 - Package findings for key audiences.
 - Briefing with City Council.
 - Meeting with Schools and City Police.

www.activelivingresearch.org

Lessons We Are Learning

- It is difficult to communicate research. Simplify results. Collaborate with communication professional/journalist
- Select researchers with interest & skill in communication. We consulted quarterly to provide frequent input.
- Some investigators are uncomfortable in translation role
- Create permanent products in multiple media
- Promote via traditional & new media
- Partnerships with key organizations, not just promotion
- Difficult to evaluate

Resources at www.activelivingresearch.org

Active Living Research www.activelivingresearch.org

Sources: SIGEMALKS: Sollis J, Bouries H, Bournan A, et al. "Neighborhood Environments and Physical Activity among Adults in 11 Countries." American Journal of Preventive Medicine, 26(6), 484–480, June 2009. BitK LIARS: SIII J et al. Bicguing for Transportation and Health: The Role of Infrastructure. Journal of Public Health Policy (2009) 30, 559–510, 60(1) 0057/jphp.2009.56) TRAFFIC CALMING: Bunn F, Collier T, Frost C, et al. "Areo-Wide Traffic Calming for Preventing Traffic Related Injuries." Cochrane Database of Systematic Reviews (1), January 2003; Elvik R "Area-Wide Urban Traffic Calming Schemes: A Heta-Analysis of Safety Effects." Accident Analysis and Prevention, 33(3): 327–336, May 2001. PUBLIC TRANSPORTATION: Edwards R: "Public Transit, Obesting, and Hedical Calos: Assessing the Magnitudes: Preventive Medicine, 46(1): 14–20, January 2008.

these are only 8% of road miles.

