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PLANETARY BOUNDARIES NOTION —
IT'S NOT JUST ABOUT CARBON
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IMPORTANT IN A GLOBAL CONTEXT
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MEETING GLOBAL FOOD NEEDS WILL DEPEND
ON FOUR CONCURRENT APPROACHES:

v' 1) Altering individual and population dietary
patterns;

v' 2) Adopting existing and developing new agricultural
production practices that reduce impacts and
conserve resources;

v' 3) More equitable distribution of resources; and

v' 4) Reduction of food waste

Adapted from: Garnett T. Food sustainability: problems, perspectives and
3 @VSUCRFS solutions. Proc Nutr Soc. 2013 Feb;72:29-39



DIETARY PATTERN AND CARRYING CAPACITY

Table 4. Carrying capacity of the U.S. by diet scenario

Scenario Population fed
Symbol (10° persons) (% of 2010 population)*
BAS (4.02) 130%
POS 21 136%
OMNI 100 151%
OMNI 80 178%
OMNI 60 217%
OMNI 40 244%
OMNI 20 249%,
ovVO 2550%
LAC 261%
VEG 238%

Peters, C. J., Picardy, J., Darrouzet-Nardi, A. F., Wilkins, J. L., Griffin, T. S., & Fick, G. W. (2016).
Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elementa: Science of the

MSUCRFS : :
e Anthropocene, 4, 000116. doi:10.12952/journal.elementa.000116



CARRYING CAPACITY IS A FIRST STEP
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FIG. 2. GHG EMISSIONS PER DAY ACCORDING TO THE 6
DIETS AND BROKEN DOWN INTO 7 FOOD GROUPS (FEMALE
ADULTS). EH = ENERGY USE IN THE HOUSEHOLD PHASE.
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S. Soret et al (2014) Climate change mitigation and health effects of varied dietary patterns
in real-life settings throughout North America. Am J Clin Nutr doi: 10.3945/ajcn.113.071589
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Fig. 5. GHG emissions associated with food production in a system repre-
sentative of the current United States and a modeled system in which
animal-derived food inputs are eliminated.

R.R.White and M.B.Hall (2017) Nutritional and greenhouse gas impacts of removing animals from
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Adequacy of diets

Diet composition, % of food type: <1.0 = requirement not met
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AND FROM THE UK...
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Figure 3 Annual greenhouse gas emissions per capita associated with producing the 2010 U.S. food availability. kg CO;-eq = kilograms of
carbon dioxide equivalents.

M.C. Heller & G.A. Keoleian (2014) Greenhouse Gas Emission Estimates
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Figure 3 | Diet and health, Diet-dependent percentage reductions in rebtive
risk of type II diabetes, cancer, coronary heart disease mortality and of all-cause
mortality when comparing each alternative diet (Mediter ranean, pescetarian
and vegetarian) to its region's conventional omnivorous diet (Methods).
Results are based on cohort studies™-*, The mean and se.m. values shown are
weighted by person-years of data for each study. Number of studies for each bar
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CONSIDERATIONS

v' This doesn’t take into account variation in production
strategies

v E.g. of beef and pasture v. grain
v E.g. of high-efficiency water use (trickle irrigation for e.g)
v Intra- vs inter- food item and sustainability

v' The U.S. has a high calcium (hence dairy)
recommended intake compared to most other
countries —this complicates things in our case since
50% of total calcium consumption is from dairy in
U.S.



HOW SOME OF OTHER VARIABLES
BECOME IMPORTANT!

MSU Center for Regional Food Systems
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BEEF AND U.S. POPULATION GROWTH

Table 2 U.S. Beef Consumption
2020 2050
Constant Per Capita . +2.2 billion
_ +.5 billion kgs
Consumption kgs
Constant National 264 223
Production kg/person kg/person

Currently about 28 kg/person/yr

MSU Center for Regional Food Systems
) @MSUCRFS



Sheet1

				Farms at Required Scale (beef, eggs and broilers)				Total Pasture for Production

				Current		Needed		Current		Need

		Michigan		0		7,500		324000		6000000

		United States

		Table 1		U.S. Farms (Current and Needed)

				Current Farms (total, all sizes)		Needed (2020)		Needed (2050)

		0.8 hectare fruit/ vegetable farms		194,000		5,600,000		7,000,000

		8 hectare fruit/ vegetable farms		194,000		560,000		700,000

		8 hectare fruit/ vegetable farms*		194,000		840,000		1,350,000

		*this assumes U.S. consumer increases consumption of produce 50% to approach dietary guidelines

		Table 2		U.S. Beef Consumption 

				2020		2050

		Constant Per Capita Consumption		+.5 billion kgs		+2.2 billion kgs

		Constant National Production		26.4  kg/person		22.3 kg/person






RUMINANTS, SYSTEMS, AND ?S - CAN RUMINANT GRAZING
SYSTEMS HELP MITIGATE CLIMATE CHANGE?

, @MSUCRFS
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Figure 2

Hypothetical North American net greenhouse gas (GHG) emission scenarios for- (1) current agri-
culture; (2) current agriculture with 50% current ruminants; (3) 25% conservation cropping and
adaptive multipaddock (AMP) grazing with current numbers of ruminants; (4) 50% conservation
cropping and AMP grazing with current numbers of ruminants; and (5) 100% conservation crop-
ping and AMP grazing with current numbers of ruminants.
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ADAPTIVE MULTI-PADDOCK GRAZING
VS. FEEDLOT FINISHING
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Fig. 2 Estimated emissions (kg 0Dz kg CW ') foreach finishing strategy — feedlot (FL) and adaptive multi-paddock (AMP) grazing — before (left) and after (right) net C flux from soils

dom amnd sion) is incorporated

P.L.Stanley, J.E.Rowntree, D.K.Beede, M.S.DelLonge, & M.W.Hamm (2018) Impacts of soil carbon
sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems.
Agricultural Systems 162 (2018) 249-258



SOIL CARBON LEVELS IN 1981 AND 1995:
RODALE FST
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S

E.G. RELATIVE LOCATION
OF PRODUCTION

_// /////7

— : "' "‘\ s
Fea) | .
A e N T
.
pe L, = e =
i
m——

MSU Center for Regional Food Systems
) @MSUCRFS

— - - e
=== | et £ =
- S s e es st + 4 =3
; bzt A5 - - e
e —a = T
.' g - 5T o i - e
2] e & ) " =
it {
8
el
f

Photos from: MSU Student Organic Farm



,@MSUCRFS



a8 4 e% s sessgEessgessgEsseReEeeseseges
e e



CO, equivalents per kg

lettuce production
Michigan
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Imported and hoophouse data derived from: R. Plawecki, R. Pirog, A. Montri, and Michael Hamm 2013. Comparative carbon footprint
assessment of winter lettuce production in two climatic zones for Midwestern market. Renewable Ag. and Food Systems: 29 (4) 310-318



E.G. OF WATER - NEW YORK METRO -
WATER FROM LOW TO HIGH WATER AREAS

Total Water Content NY
) Total Water Total Water Content | Total Water Content | Metro (2042 est. pop.
Food Category Us. Consumphon Approx. Water Content/Person/Yr |NY Metro (2014 pop.; | NY Metro (2042 est. | plus F/V increase 50%;
kg (per capita) Content/100 gm (liters) liters) pop.; liters) meat decrease 25%;
liters)
Meat 88.7 717 63.6 1,310,519,564 1,420,603,207 1,065,452,405
Dairy (all) 269.5
Fluid Milk 88.4 87.7 1705 3,512,069,280 3,807,083,100 1,730,492,318
otal Fruits and\> 3917 ( — —_—— Q
&etables - ' 420.6 8,664,227,973 9,392,023,122 14,088,034,684
Total Fruils 2794 86.5 2417 ITEEIE, 98833402 095750,
Total Vegetables 194.7 91.9 178.9 3,685,599,373 3,995,189,720 ~992,784;
Total Grain Products 90.9 104 94 194,666,255 211,018,220 211,018,220

Modeling research showed 70% of NYC food needs could be

met with respect to dairy, eggs, fruits, vegetables from NY

State* *Peters, C. J., et al. (2007). "Testing a complete-diet model for estimating the land resource
requirements of food consumption and agricultural carrying capacity: The New York State
example." Renewable Agriculture and Food Systems 22(02): 145.
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v" Challenge of ‘tonnage’ of food needed

DIETARY PATTERNS AND NUTRIENTS

Population
Metro (2014
Areas estimate) | Vegetables (lbs) Fruits (Ibs) Total Food (lbs)
428.3 279.4 707.7
Lansing 470,458 201,497,161 131,445,965 332,943,127
NYC 20,092,883 8,605,781,789 5,613,951,510 14,219,733,299
Phoenix 4,489,109 1,922,685,385 1,254,257,055 3,176,942,439
St. Louis 2,806,207 1,201,898,458 784,054,236 1,985,952,694
Lansing 302,245,742 197,168,948 499,414,690
NYC 12,908,672,683 8,420,927,265 21,329,599,949
Phoenix 2,884,028,077 1,881,385,582 4,765,413,659
St. Louis 1,802,847,687 1,176,081,354 2,978,929,041

Consuming 50% more — approximately
dietary recommendations
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CHALLENGE OF SCALE

U.S. Farms (Current and Needed)

Table 1 Current Farms | Needed Needed
(total, all sizes)| (2020) (2050)
0.8 hectare fruit/ 194,000 5,600,000 | 7,000,000
vegetable farms
8 hectare fruit/ 194,000 560,000 700,000
vegetable farms
8 hectare fruit/ 194,000 840,000 | 1,350,000

vegetable farms*

*this assumes U.S. consumer increases consumption of
produce 50% to approach dietary guidelines

Back of the Envelope Calculations — M.W. Hamm (2015);
Current from 2012 USDA Census of Agriculture



DIETARY PATTERNS AND PROTEIN

v Insect protein and palatable foods
v’ Species, diet, micronutrient potential
v'Use of indoor space

v Challenges from production to processing to consumer
acceptance

,@MSUCRFS



CONCLUSION - FOUR
RECOMMENDATIONS IN DGAC REPORT

v" Conduct research to determine whether sustainable
diets are affordable and accessible to all sectors of
the population ...

v' Develop, conduct, and evaluate in-depth analyses of
U.S. domestic dietary patterns and determine the
degree to which sustainability practices,
domestically and internationally, are important to
food choice ...

v' Develop arobust understanding of how production
practices, supply chain decisions, consumer
behaviors, and waste disposal affect the
environmental sustainability of various practices ...

v' Determine the potential economic benefits and
challenges to supply chain stakeholders ...

y @MSUCRFS
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