Focus on Vitamin B12: Present Knowledge and Future Opportunities

> Lindsay H. Allen Center Director

USDA, ARS Western Human Nutrition Research Center, UC Davis, CA

The first description of Pernicious Anemia

Sir Thomas Addison – Guys Hospital London

The conquest of Pernicious Anemia & the characterization of vitamin B12

Karl Fothers

1948: Folkers & Smith crystallized Anti-pernicious anemia principle from liver; named B12

1934: Minot, Whipple & Murphy Nobel Prize for Physiology & Medicine – "Cure of PA"

1965: Robert B. Woodward Nobel Prize for Chemistry. First chemical synthesis of B12

1964: Dorothy Hodgkin – Nobel Prize for Chemistry for studies on X-Ray crystallographic structure of B12

1930s Stomach extract for treatment of pernicious anemia

Vitamin B12: Pernicious Anemia and beyond

"The [pernicious anemia] patient, formerly a pleasant individual, is now a cantankerous curmudgeon with prematurely gray hair, light complexion, blue eyes, large ears, broad cheekbones, lemon-yellow complexion with moderate scleral icterus, and vitiligo melanotic pigmentation."

Bone marrow – megaloblastic anemia

Vitamin B-12 (cobalamin) metabolism

1 µg/d excreted in bile and \cong 50% reabsorbed

NIH's Biomarkers for Nutrition & Development (BOND): B12 Expert Panel

□ <u>Serum or plasma B12</u>

- Most common, rel. specific, marks stores. Cheap.
- Changes slowly with change in intake
- Serum holotranscobalamin (holoTC)
 - Affected by recent intake and absorption
 - Sensitivity and specificity \geq serum B12
 - Deficiency = <35-40 pmol/L
 - Gives similar deficiency prevalence to serum B12 in surveys

NIH's Biomarkers for Nutrition & Development (BOND): B12 Expert Panel: serum B12 cut-points

Cut-point (pmol/L)	Rationale
<75, severe deficiency	Anemia, neurological symptoms
75-<150, likely deficient	50% have clinical symptoms
150-221, depleted	↑ risk of clinical and metabolic dysfunction (98% elevated MMA)
>221 adequate	But, 250-350 assoc. 1 risk of poor cognition & white matter loss in elderly

- Levels naturally higher in infants and lower in late pregnancy
- Does not change much in elderly until \approx 70 years
- Reflects usual intake (but responds slowly)

NIH's Biomarkers for Nutrition & Development (BOND): the 3 other markers of B12 status

- □ <u>Serum holotranscobalamin (holoTC) <35-40 pmol/L</u>
- Form carried through blood and tissues
- Reflects recent intake and absorption
- Serum methylmalonic acid (MMA) >271 nmol/L
- Most sensitive and specific
- Reflects stores, not recent intake
- ↑ by impaired renal function (measure creatinine), age
- Plasma total homocysteine (tHcy)
- Not specific for B12

Causes of B12 deficiency

Low intake Malabsorption Aging

Dietary sources of B12 (RDA = 2.4 ug/d) (NONE in any plant source foods)

Food	Amount	ug
Liver (cooked) (low % absorbed)	100 g	84
Fish	100 g	2.5-5
Meat	100 g	1.4
Milk	1 cup	1.2
Yogurt	1 cup	1.1
Cheese	100 g	0.9
Egg	1 large	0.6
Chicken	100 g	0.3

Mean B12 intakes of men by diet groups, EPIC (Davey, 2002)

Intakes assessed by FFQ

Serum B-12 (pmol/L) vs. usual diet

B12 intake vs. plasma B12, by dietary source

Tucker, K. L et al. Am J Clin Nutr 2000;71:514-522

Copyright ©2000 The American Society for Nutrition

% B12 absorbed is inversely proportional to dose (Chanarin)

≈50% of 1 ug absorbed

% B12 absorbed is inversely proportional to dose (Chanarin)

Percent of energy in food supply from animal source foods (ASF) predicts B12 status

Malabsorption

- □ Pernicious anemia autoimmune disease where ↓ IF; only 2-4% cases deficiency, mostly >60 y.
- □ Need i.m. injections (1/month) or high doses oral B12 (≥500 ug/d).
- Food cobalamin malabsorption mostly in elderly. Crystalline B12 absorbed OK.
- **IBD**, ileal resection (\downarrow absorption in ileum).
- **Gastrectomy** (\downarrow acid and IF).
- □ PPIs (↓ acid).

NHANES III: Prevalence of deficient and marginal serum B12 (Pfeiffer et al. 2007)

Prevalence of B12 deficiency

Probably the most common nutrient deficiency in the world

High prevalence of deficiency

In wealthy and poor countries

Across all ages and physiological groups

>40% in many countries

Brito and Allen

BOND report

Consequences of B12 deficiency – does it matter?

Stages of B12 deficiency

- Changes in biomarkers
 - □ ↑ plasma and urine MMA
 - □ ↓ serum holoTC and B12
 - □ ↑ plasma tHcy
 - □ ↓ RBC B12
 - Megaloblastic anemia
- Weakness and fatigue
- Demyelination of neurons
- Reduced neuron conductivity
- Peripheral neuropathy, abnormal gait and position sense
- Subacute combined degeneration (myelopathy)
- Dementia, depression, memory loss, psychosis

Serum B12 links with poor function

	V. deficient <100 pmol/L	Deficient <150 pmol/L	Marginal <221 pmol/L
Anemia	++	+/-	No
Neuropathy	++	+	No
↑ Нсу, ММА	++	++	++
Breast milk	++	++	+
Child devpt	++	Assoc.	Assoc.
Cognition	++	+/-	Assoc.
Depression	Assoc.	Assoc.	Assoc.
Bone mineral	+	Assoc.	Assoc.
Vaccine resp.			→ ++
NTD	?	?	Assoc.

Only <u>severe</u> B12 deficiency causes anemia: B12 status of depleted Mexican women was normalized by 1 mg i.m. + 500 ug/d for 3 mo, but no effect on any CBC measure

Systematic review: probable perinatal effects of maternal B12 depletion in pregnancy

- NTDs (risk ↑2-3x if serum B12 <190 pmol/L in Ireland)</p>
- Pre-eclampsia, birth defects
- Lower birthweight
- Epigenetic effects postnatal insulin resistance
- Poor infant development

Rush et al. Eur J Clin Nutr 2014

High folate and lowB12 in pregnancy, and insulin resistance at 6 y (Yajnik et al., 2008)

Child development

% Infants with symptoms, in case studies of

B-12 deficiency (Dror & Allen)

	Mother	Mother	
	pern. anemia (n=18)	vegan (n=30)	
Wt <10 pcle	93	89	
L <10 pcle	83	60	
Head <10 pcle	91	77	
Hypotonia	61	63	
Developmental delay	56	60	
Lethargy	50	63	
Slow/abnl EEG	50	33	
Not able to sit alone	33	43	
Convulsions/tremors	33	23	
Cerebral atrophy	28	37	
Irritable	20	28	
Not smiling	11	23	

Cerebral atrophy (MRI or CT) reported in ≈ 30%

Cassell, 2005

Diffuse cerebral atrophy at 5 mo;

after supplementation, normal by 11 mo.

In some cases atrophy persists for years.

Only 30% recover full cognitive function.

Peri-urban Guatemala City

Plasma B12 in clinical case studies overlaps with values in Guatemala (12 mo. postpartum)

Guatemala: infant B12 status predicts motor development at 12 months

n=220: 30% deficient, 20% marginal

B12 status often better in <u>non</u>-breastfed infants:

In Guatemala, breast milk provides only 10% of the AI.

Global values for milk B12: analyses from the Allen lab Median values as % of Adequate Intake value

Relative median B12 concentrations in milk as % of value assumed to set Adequate Intake

In Cameroon flour fortification increased milk B12 to ≈300% of AI

Dose vs. B-12 in breast milk, by country

Mother-child B12 depletion is a continuum

What is "normal" milk B12? MILQ study

- Funded by BMGF to establish Reference Values for each nutrient across first 9 months lactation, which will
- help interpret values (Need for ASF, supplements, fortification? Impact of interventions?).
- To improve DRIs for infants, young children, lactation.
- Well-nourished (but not supplemented) mothers.
- 4 countries, same methods.
- Supported by data on diets, status, milk volume, other factors.

Cognitive loss with aging, neuropathy

Neurological manifestations of B12 deficiency: brain changes seen with MRI

Hyperintense signal in the periventricular white matter

Hyperintense signal in the posterior column of the lower cervical spinal cord

Scherer K, New Engl J Med 348; 2208: 2003

Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A Randomized Controlled Trial (Smith et al., PLOS One 2007)

Atrophy (blue) over 2 years

Placebo, -2.5%/y

Rate of atrophy was faster with greater ↑ in Hcy.

Atrophy rate most strongly predicted by lower holoTC.

Looking to the future – evolving opportunities

Better detection and diagnosis

Functional effects of marginal depletion identified

□ Large-scale B12 fortification (with folic acid)

Sergey N. Fedosov*, Alex Brito, Joshua W. Miller, Ralph Green and Lindsay H. Allen

Combined indicator of vitamin B₁₂ status: modification for missing biomarkers and folate status and recommendations for revised cut-points

Fedosov, Brito, Miller, Green, Allen CCLM 2015

cB12: A combined indicator of B12 status

Fedosov, Brito, Miller, Green and Allen, Clin Chem Lab Med 2015

and now, peripheral nerve function

cB-12 key in first characterization of the human serum metabolome in vitamin B-12 deficiency

Brito et al (J Nutr Sept. 2017)

DTI Correlates of Cognition in Conventional MRI of Normal-Appearing Brain in Patients with Clinical Features of Subacute Combined Degeneration and Biochemically Proven Vitamin B₁₂ Deficiency

P.K. Gupta, R.K. Gupta, R.K. Garg, Y. Rai, B. Roy, C.M. Pandey, H.S. Malhotra, and P.A. Narayana

51 patients B12 deficient Age-sex matched controls

Differences in MRI-DTI

No differences in conventional MRI, no difference in white matter volume, but <u>significant reductions in myelination</u> (microstructural changes) Gupta et al AJNR 2013 Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated peripheral nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of vitamin B-12 status^{1,2}

The American Journal of Clinical Nutrition

×

Alex Brito,³ Renato Verdugo,⁴ Eva Hertrampf,⁵ Joshua W Miller,^{6,7} Ralph Green,⁷ Sergey N Fedosov,⁸ Setareh Shahab-Ferdows,³ Hugo Sanchez,⁵ Cecilia Albala,⁵ Jose L Castillo,⁴ Jose M Matamala,⁴ Ricardo Uauy,⁵ and Lindsay H Allen³*

Folate repletion after folic acid fortification of flour

Latin America as an example

Fortification with folic acid

CDC 2010

Brito et al FNB 2015

Low folate prevalence dropped to <5% in most countries after fortification

Folic acid reduces NTDs (Heseker et al. Br J Nutr 2009)

Serum folate; ≥40 years of age in NHANES III 1991-1994 and NHANES 1999-2000, USA (Yang, Circulation 2006)

White

Geometric mean intake- folic acid, from enriched cereal products, ready-to-eat cereals & supplements, and % participants who took supplements containing folic acid – by serum folate quintiles NHANES 2001-2004, ≥19 years, n=8,655

Serum folate quintiles and their geometric means (nmol/L)

Yeung, LY et al. JAMA 2008;300:2486-7

School children (Queretaro, Mexico) n= ~ 300

Adequate B-12 & very high folate

Brito A, Garcia O, Allen LH (in preparation)

Are elevated folate and B-12 deficiency a public health problem?

Mexican school children

>45.4 nmol/L serum folate Need better definition of high folate in context of B12 deficiency

Does excess folic acid exacerbate vitamin B12 deficiency?

- Observations from the 1940s 1950s
 - □ Folic acid improved anemia of B12 deficiency
 - Improvement in anemia was sub-optimal and temporary, relapse after 3-4 years.
 - Neurological manifestations not prevented,
 - often <u>aggravated or precipitated</u> (if dose >1000 ug/d).

Reynolds, J Neurol Neurosurg Psychiatry 2002

Possible adverse effects of excess folic acid

- Colorectal cancer incidence and progression (U-shaped relationship)?
- \square \downarrow immune function (NK cytotoxicity)?
- Epigenetic alterations?
- Exacerbation of vitamin B12 deficiency?
 - Neurological symptoms
 - Anemia
 - Cognitive performance
 - \blacksquare \uparrow Hcy, MMA and \downarrow holotranscobalamin

Folate-B12 interaction, cognitive impairment and anemia (Selhub, Am J Clin Nutr 2009)

	B12 status	Folate status	Odds Ratio
Anemia	Normal	Normal	1
	Normal	High	0.5
	Deficient	Normal	1.6
	Deficient	High	5.1
Cog. impair	Normal	Normal	1
	Normal	High	0.4
	Deficient	Normal	1.6
	Deficient	High	4.3

Summary

- B12 deficiency much more common than recognized, due to low intake of animal source foods (not only in vegans).
 - Functional consequences diverse neurological, cognitive, pregnancy outcome, low breast milk B12, developmental, NTDs
 - For many functions the cut-point between poor status and functional changes is unclear
 - Need further work with RCTs, and use of new indicators e.g. cB12, metabolomics, DTI, etc.
 - These will inform need for adequate B12 intake and strategies to prevent depletion and deficiency

Future:

increased use of cB12, documented adverse effects of moderate deficiency, widespread B12 co-fortification with folic acid.

BOND – BIOMARKERS FOR NUTRITION AND DEVELOPMENT

- Detailed reviews and recommendations for biomarkers of folate & iodine (published), iron, zinc, vitamin A, B12.
- **B12** Report is In Press in J. Nutrition
- See BOND website: www.nichd.nih.gov

