Emerging Roles of Obesity and Nutrition on the Aging Brain and Cognition

Auriel A. Willette, Ph.D., M.S.
Assistant Professor of Food Science and Human Nutrition (ISU), Psychology (ISU), and Neurology (U. Iowa)
The effect of normal aging on the brain

Obesity and associations with brain atrophy

Lipids and Alzheimer’s disease risk

B Vitamins, PUFAs, and brain health

Insulin signaling, brain health, and cognition
Brain Atrophy with Aging

- Autopsy studies show substantial reductions in brain weight across the adult lifespan (5-10%)
- We can determine whether certain brain regions are particularly vulnerable to aging
- Prior gray matter volume studies suggest vulnerability of some prefrontal and parietal areas
- Relative sparing of sensory cortices
Atrophy measured with Cortical Thickness
Group Mean Cortical Thickness

Yellow = Thicker
Red = Thinner

Salat et al., Cerebral Cortex, 2004
Age-Associated Cortical Thinning

- Regional thinning relates to cognitive performance
- Cognitive processes impacted include visual, motor, and executive function
- Mechanisms of thinning are largely unknown
Obesity and brain atrophy in older adults
Obesity and Health Risks

- Diabetes
- Heart Disease
- GERD (Acid Reflux)
- Sleep Apnea
- Cancer
- High Blood Pressure

[Image of brain and gears]

[Questions]
Obesity and Brain Atrophy: Review

• Systematic review (2004-August 2013)

• Criteria for inclusion in review

1) At least one brain volume scan;

2) One or more of the brain lobes available. Where possible, we also examined an important sub-region per lobe (e.g., hippocampus, prefrontal cortex);

3) One or more anthropometric or direct measures of body fat;

4) Examined weight spectrum from lean to morbidly obese
Occipital Lobe and Obesity

Middle-Aged to Aged Adult

- 7 of 14 studies show more atrophy

Willette and Kapogiannis, 2015
Middle-Aged to Aged Adult

- 7 of 13 studies show more atrophy
 - Only 3 studies showed this in precuneus/PCC
 - So obesity per se is not why these regions shrink

Willette and Kapogiannis, 201
Temporal Lobe and Obesity

Middle-Aged to Aged Adults

• 9 of 13 studies show more atrophy

Willette and Kapogiannis, 2015
Frontal Lobe and Obesity

Middle-Aged to Aged Adult

- 11 of 15 studies: frontal atrophy
- 12 of 15 studies: PFC atrophy
Conclusions

• Medial temporal lobe, memory, and aging
 ➢ Obesity here shows inconsistent associations
 ➢ Literature on obesity and memory is very mixed

• Prefrontal cortex, executive function, and aging
 ➢ Obesity here shows consistent associations
 ➢ Literature on obesity and executive dysfunction is very clear

• What exactly does atrophy mean here?
 ➢ Atrophy not due to neural cell death, but shorter cell-to-cell connections
 ➢ Weight loss may reverse atrophy and cognitive dysfunction
Lipids and Alzheimer’s Disease
Serum Lipids are Related to Alzheimer’s Pathology in Nursing Home Residents

• A study at the Jewish Home & Hospital in NYC by Leslie Libow, MD and his group

• For 358 nursing home residents, serum lipids were determined at admission

• Neuropathologic diagnoses for AD were established at autopsy

• Residents with any AD pathology vs. those without AD pathology had higher mean serum total cholesterol (p=0.02) and higher mean low-density lipoprotein (LDL) (p=0.03)
B Vitamin Supplementation and PUFAs
Brain Effects of B Vitamin Supplements I

0.8 mg/d
2 years later...

No side effects...BUT only effective in patients with high homocysteine AND PUFAs!

WORSE memory and global function via Hcy

BETTER memory and global function via Hcy

N=156

Adapted from Douaud et al., 2013 (PNAS); Jernerén et al., 2015 (AJNR); pcosdiva.com
Paradoxical Findings for B12 Levels and Brain Health Correlations

Gray Matter and Vitamin B12

- **N = 964**, cognitively normal and impaired
- Higher B12 → More atrophy in hippocampus, prefrontal cortex, and parietal lobe

Brain Glucose Metabolism and Vitamin B12

- **N = 378**, cognitively normal and impaired
- Higher B12 -> Less glucose use in hippocampus and parietal lobe

Mclimans et al., in preparation
Do omega-3’s directly impact memory?

NIH study shows no benefit of omega-3 or other nutritional supplements for cognitive decline

While some research suggests that a diet high in omega-3 fatty acids can protect brain health, a large clinical trial by researchers at the National Institutes of Health found that omega-3 supplements did not slow cognitive decline in older persons. With 4,000 patients followed over a five-year period, the study is one of the largest and longest of its kind. It was published today in the Journal of the American Medical Association.

“Contrary to popular belief, we didn’t see any benefit of omega-3 supplements for stopping cognitive decline,” said Emily Chew, M.D., deputy director of the Division of Epidemiology and Clinical Applications and deputy clinical director at the National Eye Institute (NEI), part of NIH.

Dr. Chew leads the Age-Related Eye Disease Study (AREDS), which was designed to investigate a combination of nutritional supplements for slowing age-related macular degeneration (AMD), a major cause of vision loss among older Americans. That study established that daily high doses of certain antioxidants and minerals — called the AREDS formulation — can help slow the progression to advanced AMD.

- 4,000 older participants
- 5-years of placebo vs. 350mg DHA and 650mg EPA (and other groups)
- No significant change in Cognitive decline

Conclusion: Probably not.
Insulin Signaling and the Brain
Insulin Resistance, Glucose Uptake, and Memory

Late Middle-Aged Humans at Risk for AB

A PET findings

B Glucose uptake

$R^2 = 0.178$

$P < .05$, FWE

(adapted from Willette et al., 2015, JAMA Neurology)
IGF-1 and Cognition

CDR-sob
- Circle: Normal
- Triangle: Pre-AD
- Asterisk: AD

ADAS cog-11
- Circle: Normal
- Triangle: Pre-AD
- Asterisk: AD

MMSE
- Circle: Normal
- Triangle: Pre-AD
- Asterisk: AD

RAVLT Delay Recall
- Circle: Normal
- Triangle: Pre-AD
- Asterisk: AD

Webb, McLimans, et al., in preparation
Take-Homes

• The aging brain shows atrophy most in prefrontal cortex and occipital lobe

• Obesity is strongly related only to frontal lobe/prefrontal cortex in elders

• High LDL and total cholesterol, and other metabolic syndrome factors, increase risk for Alzheimer’s disease

• B vitamin supplementation works only if clients have high PUFAs AND high vascular risk factor biomarkers

• Maintaining optimal insulin sensitivity in the periphery is very important for maintaining cognitive health in normal aging and across the Alzheimer’s spectrum
Acknowledgements

External Collaborators
Laura Baker Michael Lutz
Barbara Bendlin Michelle Mielke
Suzanne Craft Stephanie Rainey-Smith
Robert Dantzer Allen Roses
Richard Davidson Carol Ryfe
Natalie Denberg Andrew Saykin
Sterling Johnson Daniel Tranel
 JoAnn Tschanz

Lab
Joseph Webb
Kelsey McLimans
Brandon Klinedinst
Jonathan Cerna

Funding

NIH
National Institute on Aging
• 3,069 community dwelling adults aged 75 or above without dementia in the Gingko Evaluation of Memory (GEMS) study were followed for 6 years

• 2,587 were cognitively normal at beginning of study

• 482 had Mild Cognitive Impairment (MCI)
 • Precursor to Alzheimer’s

• Goal: To determine the relationship between alcohol intake and people who developed AD
 Intake determined by self-reports as:
 ❖ Light = 1-7 drinks/week
 ❖ Moderate = 8-14 drinks/week
 ❖ Heavy => 14 drinks/week

Sink KM, et al. ICAD, July 2009
Moderate alcohol intake (1-2 drinks/day) associated with a 37% lower risk of dementia in participants with normal cognition at baseline, but not in MCI patients.

For those with MCI at baseline:
- Any alcohol intake was associated with a faster rate of cognitive decline.

Heavy drinkers (> 14 drinks/week) were nearly twice as likely to develop dementia compared to non-drinkers with MCI.

These results support current recommendations to drink in moderation.

Sink KM, et al. ICAD, July 2009