Focus on Vitamin B12: Present Knowledge and Future Opportunities

Lindsay H. Allen
Center Director
USDA, ARS Western Human Nutrition Research Center, UC Davis, CA
“...a very remarkable form of general anemia, occurring without discoverable cause whatsoever”.

Sir Thomas Addison – Guys Hospital London
The conquest of Pernicious Anemia & the characterization of vitamin B12

1934: Minot, Whipple & Murphy Nobel Prize for Physiology & Medicine – “Cure of PA”

1948: Folkers & Smith crystallized Anti-pernicious anemia principle from liver; named B12

1964: Dorothy Hodgkin – Nobel Prize for Chemistry for studies on X-Ray crystallographic structure of B12

1965: Robert B. Woodward Nobel Prize for Chemistry. First chemical synthesis of B12
1930s
Stomach extract for treatment of pernicious anemia
Vitamin B12: Pernicious Anemia and beyond

“The [pernicious anemia] patient, formerly a pleasant individual, is now a cantankerous curmudgeon with prematurely gray hair, light complexion, blue eyes, large ears, broad cheekbones, lemon-yellow complexion with moderate scleral icterus, and vitiligo melanotic pigmentation.”

Harris, JW, and Kellermeyer RW. 1970. *The Red Cell*
Bone marrow – megaloblastic anemia
B₁₂ is attached to protein when ingested

B₁₂ Complexed to HC to form HoloHC and transported to the small intestine

B₁₂ Complexed to IF and absorbed in the intestine

B₁₂ Complexed to TC, to form Active B₁₂ (holotranscobalamin)

Available to all cells for DNA Synthesis etc

Food protein

Intrinsic Factor (IF) (B₁₂ uptake to intestine)

Haptocorrin (HC) (unknown function)

Transcobalamin (TC) (B₁₂ uptake to intestine)
Vitamin B-12 (cobalamin) metabolism

- methyl-cobalamin
- homocysteine → methionine
- adenosyl-cobalamin
- methylmalonyl/CoA → succinyl CoA

RDA 0.9-2.4 ug/d
(to maintain plasma B12 and prevent anemia)

1 µg/d excreted in bile and ≈ 50% reabsorbed
NIH’s Biomarkers for Nutrition & Development (BOND): B12 Expert Panel

- **Serum or plasma B12**
 - Most common, rel. specific, marks stores. Cheap.
 - Changes slowly with change in intake

- **Serum holotranscobalamin (holoTC)**
 - Affected by recent intake and absorption
 - Sensitivity and specificity ≥ serum B12
 - Deficiency = <35-40 pmol/L
 - Gives similar deficiency prevalence to serum B12 in surveys

<table>
<thead>
<tr>
<th>Cut-point (pmol/L)</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td><75, severe deficiency</td>
<td>Anemia, neurological symptoms</td>
</tr>
<tr>
<td>75-<150, likely deficient</td>
<td>50% have clinical symptoms</td>
</tr>
<tr>
<td>150-221, depleted</td>
<td>↑ risk of clinical and metabolic dysfunction (98% elevated MMA)</td>
</tr>
<tr>
<td>>221 adequate</td>
<td>But, 250-350 assoc. ↑ risk of poor cognition & white matter loss in elderly</td>
</tr>
</tbody>
</table>

- Levels naturally higher in infants and lower in late pregnancy
- Does not change much in elderly until ≈70 years
- Reflects usual intake (but responds slowly)
NIH’s Biomarkers for Nutrition & Development (BOND): the 3 other markers of B12 status

- **Serum holotranscobalamin (holoTC) < 35-40 pmol/L**
 - Form carried through blood and tissues
 - Reflects recent intake and absorption

- **Serum methylmalonic acid (MMA) > 271 nmol/L**
 - Most sensitive and specific
 - Reflects stores, not recent intake
 - ↑ by impaired renal function (measure creatinine), age

- **Plasma total homocysteine (tHcy)**
 - Not specific for B12
Causes of B12 deficiency

Low intake
Malabsorption
Aging
Dietary sources of B12 (RDA = 2.4 ug/d)
(NONE in any plant source foods)

<table>
<thead>
<tr>
<th>Food</th>
<th>Amount</th>
<th>ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (cooked) (low % absorbed)</td>
<td>100 g</td>
<td>84</td>
</tr>
<tr>
<td>Fish</td>
<td>100 g</td>
<td>2.5-5</td>
</tr>
<tr>
<td>Meat</td>
<td>100 g</td>
<td>1.4</td>
</tr>
<tr>
<td>Milk</td>
<td>1 cup</td>
<td>1.2</td>
</tr>
<tr>
<td>Yogurt</td>
<td>1 cup</td>
<td>1.1</td>
</tr>
<tr>
<td>Cheese</td>
<td>100 g</td>
<td>0.9</td>
</tr>
<tr>
<td>Egg</td>
<td>1 large</td>
<td>0.6</td>
</tr>
<tr>
<td>Chicken</td>
<td>100 g</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Mean B12 intakes of men by diet groups, EPIC (Davey, 2002)

Intakes assessed by FFQ
Serum B-12 (pmol/L) vs. usual diet
B12 intake vs. plasma B12, by dietary source

Copyright ©2000 The American Society for Nutrition
% B12 absorbed is inversely proportional to dose (Chanarin)

% Absorbed similar from meat vs. pills (but 20% lower from liver)

Average MAXIMUM uptake = 1.5 ug from 5 to 50 ug dose

≈50% of 1 ug absorbed
% B12 absorbed is inversely proportional to dose (Chanarin)

Average MAXIMUM uptake = 1.5 ug from 5 to 50 ug dose

≈50% of 1 ug absorbed

Dose

Amount absorbed

% absorbed
Percent of energy in food supply from animal source foods (ASF) predicts B12 status

- < 5 %
- 5-10 %
- 10-15%
- 15-20%
- > 20 %
Malabsorption

- **Pernicious anemia** – autoimmune disease where ↓ IF; only 2-4% cases deficiency, mostly >60 y.
- Need i.m. injections (1/month) or high doses oral B12 (≥500 ug/d).
- **Food cobalamin malabsorption** – mostly in elderly. Crystalline B12 absorbed OK.
- **IBD, ileal resection** (↓ absorption in ileum).
- **Gastrectomy** (↓ acid and IF).
- **PPIs** (↓ acid).
NHANES III: Prevalence of deficient and marginal serum B12 (Pfeiffer et al. 2007)

![Bar chart showing the prevalence of deficient and marginal serum B12 across different age groups.](chart.png)

- Red bars represent serum levels less than 148 pmol/L.
- Orange bars represent serum levels between 148-221 pmol/L.

The x-axis represents age groups: <4, 4-5, 6-11, 12-19, 20-29, 30-39, 40-49, 50-59, 60-69, ≥70.

The y-axis represents the percentage of individuals in each age group.

N ≈ 1000-1500/age group.
Prevalence of B12 deficiency

Probably the most common nutrient deficiency in the world
High prevalence of deficiency

In wealthy and poor countries

Across all ages and physiological groups

>40% in many countries

Brito and Allen

BOND report
Consequences of B12 deficiency – does it matter?
Stages of B12 deficiency

- Changes in biomarkers
 - ↑ plasma and urine MMA
 - ↓ serum holoTC and B12
 - ↑ plasma tHcy
 - ↓ RBC B12
 - Megaloblastic anemia

- Weakness and fatigue
- Demyelination of neurons
- Reduced neuron conductivity
- Peripheral neuropathy, abnormal gait and position sense
- Subacute combined degeneration (myelopathy)
- Dementia, depression, memory loss, psychosis
Serum B12 links with poor function

<table>
<thead>
<tr>
<th></th>
<th>V. deficient <100 pmol/L</th>
<th>Deficient <150 pmol/L</th>
<th>Marginal <221 pmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>++</td>
<td>+/-</td>
<td>No</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>++</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>↑ Hcy, MMA</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Breast milk</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Child devpt</td>
<td>++</td>
<td>Assoc.</td>
<td>Assoc.</td>
</tr>
<tr>
<td>Cognition</td>
<td>++</td>
<td>+/-</td>
<td>Assoc.</td>
</tr>
<tr>
<td>Depression</td>
<td>Assoc.</td>
<td>Assoc.</td>
<td>Assoc.</td>
</tr>
<tr>
<td>Bone mineral</td>
<td>+</td>
<td>Assoc.</td>
<td>Assoc.</td>
</tr>
<tr>
<td>Vaccine resp.</td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>NTD</td>
<td>?</td>
<td>?</td>
<td>Assoc.</td>
</tr>
</tbody>
</table>
Only severe B12 deficiency causes anemia: B12 status of depleted Mexican women was normalized by 1 mg i.m. + 500 ug/d for 3 mo, but no effect on any CBC measure.

54% deficient or marginal at baseline
Systematic review: probable perinatal effects of maternal B12 depletion in pregnancy

- NTDs (risk ↑2-3x if serum B12 <190 pmol/L in Ireland)
- Pre-eclampsia, birth defects
- Lower birthweight
- Epigenetic effects - postnatal insulin resistance
- Poor infant development

High folate and low B12 in pregnancy, and insulin resistance at 6 y (Yajnik et al., 2008)

Insulin resistance (HOMA-IR)

Tertiles of cobalamin

- <114 pm
- 114-160 pm
- >160 pm

Tertiles of red cell folate

- >1144 nM
- 807-1144 nM
- <807 nM
Child development
% Infants with symptoms, in case studies of B-12 deficiency (Dror & Allen)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Mother pern. anemia (n=18)</th>
<th>Mother vegan (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt <10 pcle</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>L <10 pcle</td>
<td>83</td>
<td>60</td>
</tr>
<tr>
<td>Head <10 pcle</td>
<td>91</td>
<td>77</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Developmental delay</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>Lethargy</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>Slow/abnl EEG</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>Not able to sit alone</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>Convulsions/tremors</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Cerebral atrophy</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>Irritable</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Not smiling</td>
<td>11</td>
<td>23</td>
</tr>
</tbody>
</table>
Cerebral atrophy (MRI or CT) reported in \(\approx 30\% \)

Diffuse cerebral atrophy at 5 mo;

after supplementation, normal by 11 mo.

In some cases atrophy persists for years.

Only 30% recover full cognitive function.

Cassell, 2005
Peri-urban Guatemala City
Plasma B12 in clinical case studies overlaps with values in Guatemala (12 mo. postpartum)
Guatemala: infant B12 status predicts motor development at 12 months

n=220: 30% deficient, 20% marginal

Factor score: Deficient lower than Adequate (P<0.01) adjusted for SES, environment etc.
B12 status often better in non-breastfed infants:

In Guatemala, breast milk provides only 10% of the AI.
In Cameroon flour fortification increased milk B12 to ≈300% of AI
Dose vs. B-12 in breast milk, by country

Milk B-12 reflects maternal stores more than recent intake

Cameroon: flour fortification improves status and milk most – frequent small doses?

Allen Lab
Mother-child B12 depletion is a continuum

Maternal depletion in pregnancy

↓

Low B12 stores in infant at birth & in colostrum, breast milk

↓

Infant depletion

↓

Depletion at 7, and 12 months

Breastfed freq (-)
Cows milk (+)

Depletion at 21 months (still correlated with early maternal B12 status)

↓ weight, length, motor development
What is “normal” milk B12? MILQ study

- Funded by BMGF to establish Reference Values for each nutrient across first 9 months lactation, which will help interpret values (Need for ASF, supplements, fortification? Impact of interventions?).
- To improve DRIs for infants, young children, lactation.
- Well-nourished (but not supplemented) mothers.
- 4 countries, same methods.
- Supported by data on diets, status, milk volume, other factors.
Cognitive loss with aging, neuropathy
Neurological manifestations of B12 deficiency: brain changes seen with MRI

Hyperintense signal in the periventricular white matter

Hyperintense signal in the posterior column of the lower cervical spinal cord

Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A Randomized Controlled Trial (Smith et al., PLOS One 2007)

Atrophy (blue) over 2 years

Placebo, -2.5%/y

B vitamins (FA+B6+B12)
Rate of atrophy was faster with greater ↑ in Hcy.

Atrophy rate most strongly predicted by lower holoTC.
Looking to the future – evolving opportunities

- Better detection and diagnosis
- Functional effects of marginal depletion identified
- Large-scale B12 fortification (with folic acid)
Combined indicator of vitamin B_{12} status: modification for missing biomarkers and folate status and recommendations for revised cut-points

$n = 5,211$
cB12: A combined indicator of B12 status
Fedosov, Brito, Miller, Green and Allen, Clin Chem Lab Med 2015

- Can estimate with 2, 3 or 4 biomarkers
- Can correct for low sfolate (↑tHcy)
- Best predictor of Hb, MMSE, and now, peripheral nerve function

Fedosov, Brito, Miller, Green, Allen CCLM 2015
cB-12 key in first characterization of the human serum metabolome in vitamin B-12 deficiency
DTI Correlates of Cognition in Conventional MRI of Normal-Appearing Brain in Patients with Clinical Features of Subacute Combined Degeneration and Biochemically Proven Vitamin B_{12} Deficiency

51 patients
B12 deficient
Age-sex matched controls

Differences in MRI-DTI

No differences in conventional MRI, no difference in white matter volume, but **significant reductions in myelination** (microstructural changes)

Gupta et al AJNR 2013
Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated peripheral nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of vitamin B-12 status1,2

Alex Brito,3 Renato Verdugo,4 Eva Hertrampf,5 Joshua W Miller,6,7 Ralph Green,7 Sergey N Fedosov,8 Setareh Shahab-Ferdows,3 Hugo Sanchez,5 Cecilia Albala,5 Jose L Castillo,4 Jose M Matamala,4 Ricardo Uauy,5 and Lindsay H Allen3*

51 adults >70 y
B12 deficient
10 mg i.m. B12
Assessment at baseline and after 4 mo

Improvement in large myelinated fibers
Folate repletion after folic acid fortification of flour

Low folate prevalence dropped to <5% in most countries after fortification
Folic acid reduces NTDs
(Heseker et al. Br J Nutr 2009)

Prevention limit
= 5-8 NTD/10,000 births
Serum folate; ≥40 years of age in NHANES III 1991-1994
and NHANES 1999-2000, USA (Yang, Circulation 2006)

Folate deficiency
20-25% → ≈ 1%

20 ng/mL = 9 nmol/L
Geometric mean intake - folic acid, from enriched cereal products, ready-to-eat cereals & supplements, and % participants who took supplements containing folic acid – by serum folate quintiles.

NHANES 2001-2004, ≥19 years, n=8,655

Yeung, LY et al. JAMA 2008;300:2486-7
School children (Queretaro, Mexico) n= ~ 300

Adequate B-12 & very high folate

Brito A, Garcia O, Allen LH (in preparation)
Are elevated folate and B-12 deficiency a public health problem?

Need better definition of high folate in context of B12 deficiency

Mexican school children

>45.4 nmol/L serum folate
Does excess folic acid exacerbate vitamin B12 deficiency?

- Observations from the 1940s - 1950s
 - Folic acid improved anemia of B12 deficiency
 - Improvement in anemia was sub-optimal and temporary, relapse after 3-4 years.
 - Neurological manifestations not prevented,
 - often aggravated or precipitated (if dose >1000 ug/d).

Reynolds, J Neurol Neurosurg Psychiatry 2002
Possible adverse effects of excess folic acid

- ↑ colorectal cancer incidence and progression (U-shaped relationship)?
- ↓ immune function (NK cytotoxicity)?
- Epigenetic alterations?
- Exacerbation of vitamin B12 deficiency?
 - Neurological symptoms
 - Anemia
 - Cognitive performance
 - ↑ Hcy, MMA and ↓ holotranscobalamin
Folate-B12 interaction, cognitive impairment and anemia (Selhub, Am J Clin Nutr 2009)

<table>
<thead>
<tr>
<th></th>
<th>B12 status</th>
<th>Folate status</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>Normal</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>High</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Deficient</td>
<td>Normal</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Deficient</td>
<td>High</td>
<td>5.1</td>
</tr>
<tr>
<td>Cog. impair</td>
<td>Normal</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>High</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Deficient</td>
<td>Normal</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Deficient</td>
<td>High</td>
<td>4.3</td>
</tr>
</tbody>
</table>
Summary

- B12 deficiency much more common than recognized, due to low intake of animal source foods (not only in vegans).

- Functional consequences diverse – neurological, cognitive, pregnancy outcome, low breast milk B12, developmental, NTDs

- For many functions the cut-point between poor status and functional changes is unclear

- Need further work with RCTs, and use of new indicators e.g. cB12, metabolomics, DTI, etc.

- These will inform need for adequate B12 intake and strategies to prevent depletion and deficiency

Future:

- increased use of cB12, documented adverse effects of moderate deficiency, widespread B12 co-fortification with folic acid.
BOND – BIOMARKERS FOR NUTRITION AND DEVELOPMENT

- Detailed reviews and recommendations for biomarkers of folate & iodine (published), iron, zinc, vitamin A, B12.
- B12 Report is In Press in J. Nutrition
- See BOND website: www.nichd.nih.gov